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Abstract 
This paper presents the architecture of a configuration 
and test processor that enables designers to embed test 
capabilities, and build products that are readily re-
configurable.  The architecture supports built-in testing 
and in-the-field re-configuration for PCBs and systems. 

Introduction 
An emerging issue for system designers is the desire 
for configurable products with a quick time to market.  
This has motivated designers to increase the adoption 
of programmable architectures.  As such, a growing 
number of products now utilize programmable logic 
devices, such as FPGAs and CPLDs, and 
programmable non-volatile memories, such as 
EEPROM and FLASH.  In order to support 
continuously changing industry standards, field 
upgrade-able fixes and enhancements are becoming a 
common product requirement.  Designing systems with 
the ability to remotely upgrade the programmable logic 
and non-volatile memory of the system, while in the 
field, is a typical approach to addressing these 
requirements.  However, obtaining access to all of the 
programmable devices is increasingly more difficult, 
especially for PCBs with mezzanine cards or multi-
PCB backplane based systems.  For the system 
designer, these capabilities can add to the costs and 
design effort required to develop, and later to 
manufacture such configurable products.  Often, the 
designers create their own ad-hoc functional based 
methods for debug, configuration and test.  This is a 
costly and time-consuming approach, and does not 
provide for a solution that is readily re-usable on future 
product designs. 
 
Traditionally, the approach used to embed test into 
PCBs and systems has been to utilize functional 
diagnostic code, as developed by test engineers and 
systems designers, stored on-board the product.  For 
example, stored in the CPU’s FLASH memory.  These 
embedded tests are then used as a means to test the 
integrated systems, both in manufacturing and in the 

field.  Such functional test programs are ad-hoc, 
custom, embedded software applications.  They require 
specialized resources to develop, validate and maintain, 
which results in high costs due to long development 
times and related engineering resources.  Furthermore, 
Quality Managers cannot easily measure the fault 
coverage of functional tests.  That is, there is no way to 
mathematically calculate the percentage of pins that are 
being tested for stuck-at faults versus those not tested 
when functional software based test is used. The 
traditional method is to inject stuck-at faults through 
physical access, but this is time consuming and 
difficult to do on a modern PCB assembly with BGAs 
and mezzanine cards.  Collecting data on field returns 
tells only what faults are being caught not what faults 
are missed, and the major disadvantage of this 
approach is that it is done after customers receive the 
product. 
 
While significant resources can be invested, any 
software based functional tests that can’t identify faults 
in the field or isolate faults enough to repair a failing 
system offer little value over running the system in 
mission mode and identifying that it doesn’t function.  
Any functional test will also require a (mostly) 
working system in order to execute, and so they offer 
limited value in system-bring up and debug of 
prototypes.  As systems grow more complex, it is 
becoming impractical to continue with this approach to 
embedded system test, just as it became impractical to 
continue testing ICs with functional tests.  

Current Approaches to Embedded 
Test and Configuration 
The following sections provide some background on 
methods that have traditionally been used for 
facilitating product re-configuration, and for embedded 
test of PCBs and systems. 
 
Re-Configuration of Programmable Devices 
The method that is predominately used to configure 
FPGA logic employs application specific configuration 
PROMs.  These PROMs are programmed with the 
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configuration data for the design, which is then loaded 
into the FPGA’s configuration memory at power-up.  
However, there are a number of issues with regards to 
this method. 
 
A large FPGA, on average, requires up to four 
configuration PROMs for a single design.  In some 
extreme cases, with the largest FPGAs and designs, up 
to seven PROMs could be needed.  The number of 
PROMs impacts PCB parts costs, board area and layout 
time.  Moreover, configuration PROMs are limited in 
that they can only hold one FPGA design.  This is an 
issue because in order to satisfy requirements for re-
configurable products, it is often necessary to have the 
ability to load a product with different FPGA designs 
based on the target use of the product by the customer.  
For example, it is sometimes desirable to load different 
protocols or algorithms into an FPGA based on the 
target communication medium, or the geographical 
location where the product will be used.  A further 
issue is that configuration PROMs employ a 
proprietary method for programming FPGAs, so they 
are not interchangeable between different 
programmable device vendors.  Also, the PROMs will 
require an on-board mechanism that enables them to be 
re-configured in-system. 
 
Another issue with the configuration PROM method is 
integration of FPGA configuration with board and 
system test.  For instance, many FPGAs now support 
various I/O logic families such as GTL, SSTL, HSTL, 
PECL and LVDS.  To maximize fault coverage in a 

complex system, the FPGA based PCBs need to be 
tested in at least two scenarios, with the FPGA I/O 
configured and with the I/O unconfigured.  It is also 
desirable to program the FPGAs during boundary-scan 
test with small ‘test’ helper circuits to maximize test 
coverage and add at-speed tests.  
 
Issues surrounding PROM based configuration such as 
these have driven design engineers to explore new 
methods for in-system configuration.  Unfortunately, 
this has meant that many design teams have had to 
design and develop their own custom configuration 
capabilities.  A custom configuration method often 
ends up being a ‘one-off’ solution.  This is not cost 
effective due to the added design time and part cost, 
increased engineering verification and debug time, lack 
of support by commercial design and test tools, added 
software integration costs and lack of re-use in the next 
version of the product design.  When using a 
proprietary method for FPGA configuration, the lack of 
coordination between configuration and test through 
IEEE Std. 1149.1 or 1532 [1], [2] based test 
development and validation tools, adds to engineering 
time and increases test cost and complexity.  Especially 
the complexity of embedded self-test.  In addition, 
these approaches also result in loss of fault coverage. 
 
Another common approach used to configure 
programmable devices is to interface the system 
processor to an 1149.1 Test Bus Controller (TBC) IC 
[3], and then use this access mechanism to reconfigure 
the FPGA PROMs.  This method is shown in Figure 1. 

 
Figure 1.  Traditional CPU and Test Bus Controller  
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This however has serious drawbacks in that it doesn’t 
reduce configuration PROM costs or PCB area, since 
the PROMs are still needed for FPGA configuration.  
Another major drawback is that there is no 
interoperability between the PROM vendor’s external 
programming tools and programming with the TBC 
method.  Successful programming of the PROMS with 
the vendor’s tools does not guarantee that the TBC and 
CPU firmware can program the PROMs.  
Consequently, additional validation and debug are 
needed.  Configuration of FLASH based PROMS and 
FPGAs can be timing dependent, so it is difficult to 
predict the timing, throughput, and delivery of the 
configuration data with this approach.   Interfacing to 
the CPU is not always straightforward, as it requires 
glue logic, for example using a CPLD, to provide 
peripheral addressing on the CPU address/data bus to 
the TBC.  Finally, glue logic is also needed around the 
TBC to allow access by external PROM and FPGA 
programming tools during bring-up and validation 
 
Designers may be tempted to use the mission mode 
processor to program FPGAs directly.  However, this 
creates hidden engineering and product costs 
downstream.  The slow configuration speed prohibits 
practical application of multi-design FPGA loading.  
For systems that use this approach, configuration times 
can exceed several minutes to configure all of the 
FPGAs in the system.  For products that require “on-
the-fly” re-configuration, this is prohibitive. The poor 
programming performance of this approach also affects 
throughput during manufacturing, adding to the cost of 
the product.  A difficult problem to avoid with this 
approach is system wide resets that are controlled by 
programmable devices, such as CPLDs that also have 
IEEE 1149.1 test capability.  This creates undue 
complexity since basic Boundary-Scan instructions can 
toggle system and FPGA reset pins in ways that the 
designer did not envision.  This will affect the 1149.1 
pin level diagnostics capability, as a simple stuck at 
fault in a critical interconnect between an FPGA and 
the CPU will negatively affect all of the serial data for 
the Boundary Scan test.  Thus, it is best to avoid 
integrating mission mode logic with serial 
configuration and test mechanisms.  
 
Another major drawback with this approach is that 
custom firmware must be developed for the target PCB 
and each individual FPGA configuration must be 
validated and debugged for the entire life of the 
product.  Software such as “JAM/STAPL” for 

CPLD/PROM configuration has been offered by FPGA 
vendors [4].  However, much consideration must be 
made in order for it to be used in a complex multi-
board system.  For instance, when this software is 
executed by the mission mode CPU and FLASH, 
additional care must be taken into account so when 
new FPGA designs are distributed in the field and 
programmed in the FLASH, the FLASH has no 
possibility of becoming corrupt and hanging the 
mission mode CPU.  Finally, it should be noted that 
with the adoption of IEEE Std. 1532, the JAM/STAPL 
approach has become obsolete. 
 
These types of risks should be assessed before in-house 
development is considered.  Also the on-going 
software development and software maintenance costs 
when target CPUs change, architectures change, or 
software development teams change must be accounted 
for.  These factors can not be overlooked. 
 
C++/STAPL Code-Based Embedded Test 
Besides functional based testing, as was discussed in 
the introduction, using the system CPU and an 1149.1 
TBC is another approach that is often used to embed 
test [5].  The approach enables a foundation for both 
embedded structural test and functional tests, but has 
its own shortcomings.  Figure 2 shows a typical flow 
used in this type of approach.  Notice that it is 
necessary to modify existing tests and re-validate them 
after each modification. 
 
The modifications of the production tests are needed 
since the CPU, FLASH, and connected devices cannot 
be tested while the CPU is applying the tests.  Once 
they are modified, they must be converted for the 
embedded environment and validated a second time as 
embedded tests.   The engineering resource cost of this 
approach, when used for every test and every FPGA 
design, on every system configuration, should not be 
overlooked. 

A Novel Structured Approach to 
Embedded Test and Configuration 
It has been estimated that a PCB will be tested up to 
seven times during its product life [7].  This coupled 
with the desire to perform test and configuration in 
geographically disperse areas, provides a compelling 
reason to embed test and configuration into the PCB, or 
system itself.  For example, consider that in production 
manufacturing, board level device configuration and  
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Figure 2.  Development and validation flow for traditional CPU and TBC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
testing would typically be run using ICT.  However, if 
we embed a dedicated configuration and test processor, 
we can eliminate the need to run boundary-scan based 
digital tests on ICT equipment.  This lowers 
manufacturing costs by greatly reducing the time 
aboard spends sitting on higher cost capital equipment.  
This approach to embedded test then allows the same 
set of high quality tests to be used in many different 
environments and through all phases of the product’s 
life cycle.  This includes lab prototyping, volume PCB 
manufacturing, system integration, vibration test, 
HALT/HASS test, power-up self-test, field service and 
depot repair. 
 
A dedicated configuration and test processor is able to 
manage multiple system configurations, so system re-
configuration can take place anywhere and engineering 
changes can be easily made at any time during a 
product’s life cycle.  There are many examples of 
dedicated, special purpose, processors in systems 
today.  For example, network processors, audio 
processors, digital signal processors and video 
processors.  For such tasks, dedicated processors offer 
many advantages over using the mission mode general 
purpose CPU.  In this case, a dedicated architecture for 
embedded test enables testing of the general purpose 
CPU and its’ support logic, and logging of all failures 
without the need for the system to function. 
 
For these reasons, we developed a dedicated embedded 
configuration and test processor (C&T processor) that 
will function as a centralized manager for configuring 
and testing PCBs and systems [8].  This architecture 

was specifically designed to addresses the problems 
associated with the previously discussed methods, and 
it has many advantages and benefits when compared to 
these other approaches.  First, by including a dedicated 
embedded configuration and test processor in products, 
board and system designers can simplify in-system 
device configuration while enabling comprehensive 
structural test throughout the system, including the 
mission mode CPU. The dedicated processor can be 
provided as an IC or as infrastructure IP, which reduces 
the design time for engineers.  Consequently, the 
embedded test and configuration processor enables a 
structured methodology for designing field-
configurable and self-testable systems.  This reduces 
test-engineering development effort and reduces test 
execution time.  The processor can be used at the board 
and system levels and allows designers to take 
advantage of cost efficiencies over the entire product 
life cycle.   It also provides for a scalable and reusable 
methodology, which augments existing test and 
configuration standards.  Finally, the architecture was 
designed to off-load ICT equipment, such that 
structural digital test and device configuration can be 
done in-system, while expensive ICT equipment can be 
better leveraged for analog testing.   
 
Centralized Management for Embedded  
Configuration and Test  
The configuration and test processor is designed 
around a novel architecture. Enabling manufacturing 
tests, and device configuration suites, to be developed 
and validated with automated PC based tools and  
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Figure 3.  Embedded Configuration and Test (C&T) Processor for a single PCB system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
subsequently automatically embedded into the system.  
The processor is a vendor independent solution, 
eliminating the need for proprietary PROM or FLASH 
based solutions.  As infrastructure IP for configuration 
and test of boards and systems, designers no longer 
need to develop customized methods and designs for 
embedded in-system solutions.  A single configuration 
and test processor at power-up, or under CPU control, 
can automatically run the entire manufacturing test 
stream, including scan tests, logic BIST, memory 
BIST, and board/system interconnect tests – as well as 
configure all the programmable logic devices in the 
system. 
 
Figure 3 shows an example of how the configuration 
and test processor can be used at the board level.  This 
illustrates how the configuration and test processor 
connects externally to automated development tools 
that are used for developing and validating 
configuration data and test programs. The flow for 
development and validation with this architecture is 
also show in Figure 3, which is much simpler than the 
embedded test flow required in Figure 2. 
 
The architecture uses PC-based IEEE 1149.1 software 
tools for ATPG and debug.  This development 

environment then interfaces with an IEEE 1149.1 
controller, which connects to the processor on the PCB.  
The embedded test and configuration processor then 
interfaces with an optional Scan Ring Linker (SRL) [6] 
that partitions the scan paths at the board level.   
 
As can be seen by comparing Figure 3 with Figure 1, 
the embedded configuration and test processor replaces 
the configuration PROMS and interfaces to a FLASH 
memory device.  The FLASH stores the test and 
configuration suites of the processor and the processor 
drives the 1149.1 scan chains on the board, in this 
example via an SRL.  The process also interfaces with 
an external IEEE 1149.1 connector, which allows 
communication to and from the PC-based tools.  This 
interface is used to develop and validate configuration 
and test vectors using the development and validation 
tools.  This is a major advantage in that the external 
Boundary Scan tools can communicate through the 
processor directly.  Therefore, this guarantees the 
equivalent drive and signal integrity for the on-board 
embedded configuration and test mechanism, as was 
achieved with the external PC-based tools.  The 
external tools and the embedded processor essentially 
contain the same ‘engine’ for interpreting the scan test 
data and the FPGA configuration data, so their 
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behavior is exactly the same, including critical timing 
elements needed for CPLD programming.  The result is 
that only one configuration and test validation step is 
needed, eliminating the need to re-validate the vectors 
in the embedded environment.  After the test and 
configuration suites are finalized through the external 
connector and tools, they are downloaded into the 
FLASH for embedded execution.  Then the external 
IEEE 1149.1 equipment is disconnected from the PCB 
and the processor assumes control of running the 
embedded test suites and programming the FPGAs. 
 
Efficient Storage Architecture 
The PC based software tools enable the developer to 
create test and configuration ‘suites’ that hold an 
unlimited number of test vectors, test scripts, flow 
scripts, and FPGA configuration data files.  The PC 
based software and C&T processor can hold up to 16 
suites at one time.  The first suite, suite ‘0’ is reserved 
as the ‘reset’ suite, enabling a set of procedures to be 
executed automatically when a failure occurs.  The 
‘reset’ suite can be as simple as causing a TEST-
LOGIC-RESET or more complex, addressing PCBs in 
a system and performing an orderly shutdown.  An 
example test suite is shown in Figure 4.  In the figure, 
the suite includes running standard tests like 
interconnect and more advanced tests such as BIST.  
Note that complex decision-making is a capability, 
allowing the C&T processor to identify PCB and 
System configurations and acting appropriately.  
Important controls used during PC based 1149.1 test 
are also executed by the C&T processor, for instance, 
the TCK frequency can be changed to 1MHZ on-the-
fly to program slower devices such as a CPLD. The 
C&T processor can apply one of these 15 sets of test 
and configuration ‘suites’ at power-up. 
 

Figure 4.  Example Test Suite 

Also shown is the embedded diagnostic code.  As tests 
and configuration data are added to the suites, a 
diagnostic code is assigned that will be used by the 
C&T processor to indicate which test failed during 
power-up.  The test suites and corresponding test select 
pins of the processor allow the engineer to create one 
set of configuration and test to be applied at power-up 
and another test and configuration suite to be applied at 
a different time, such as during maintenance and 
updates of the system.   A single incremental image 
generated by the PC based tools could be distributed 
physically or electronically to customers and uploaded 
to the storage area of the C & T processor.  For 
instance, CPLDs do not need to be programmed at 
power-up, however, by including a CPLD 
reconfiguration capability on suite 2, all (or just 
specific ones) of the CPLDs in a system could be 
updated in the field, without writing general purpose 
CPU code to accomplish the task.  
 
The PC based software tools analyze duplicate data 
found not only in a single suite, but also across all 16 
suites.  The novel way the storage image is created 
enables scalability, as in multi-board systems many of 
the tests and configuration data are the same. This 
capability reduces the size of the image beyond the 
built-in data compression and hence the size of the 
FLASH needed for storage.  For example, consider a 
PCB where three 16 Megabit FPGAs out of six have 
the same FPGA design, as illustrated in Figure 5.  
Using a CPLD and a FLASH to program the FPGAs 
requires 48Megabits of FLASH.  With the C&T 
processor, compression of the FPGA data results in an 
approximately 10 Megabit image.  With just a few 
bytes of data overhead, the same image can be used for 
all three FPGAs, providing an effective savings of 38 
Megabits of FLASH memory. Since many large 
telecom PCBs have multiple data channels, typically 4, 
8 or 16 FPGAs have duplicate design data in them.  
The C&T processor’s FLASH needs are considerably 
reduced compared to using PROMs, commercial 
configurators from the FPGA vendors, or an in-house 
designed sequencer using a CPLD coupled to a 
FLASH.  The reduced storage needs allow designers 
more flexibility in making in-the-field re-configurable 
systems, since one FPGA change doesn’t require an 
entire duplicate set of configuration data for the PCB.  
An FPGA that performs a DSP function can be loaded 
with different DSP algorithms based on the target use 
of the product, with only an incremental impact on 
storage area.   
 

Suite 1
1 Check_Scan_Chain.script
2 Interconnect.svf
3 Execute_Bist.script
Target U1

4 Program_DesignA.bit
5 Check_U2_exists.script
6 Program_DesignA.bit
Target U3

7 Program_DesignB.bit
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Figure 5.  Processor Storage Example 
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Using the C&T Processor at the System Level 
The configuration and test processor can also be used 
at the system level, this is shown in the example multi-
board system of Figure 6.  This system uses a multi-
drop 1149.1 bus called the Parallel Test Bus (PTB), 
along with an addressable Parallel Test Bus Controller 
(PTBC) on each board.  These are described in the 
Parallel Test Architecture (PTA) references [6], [10], 
[11].  In this configuration, only the Master/Slave PCB 
(Type A) has an embedded configuration and test 
processor.  This provides a single, centralized, 
processor that is dedicated for managing all system 
configuration and test.  Engineers can use the external 
IEEE 1149.1 controller and embedded processor for 
validation, before embedding the configuration and test 
data.  As can be seen, the architecture enables 
embedding test and configuration at the system level, 
including: PCB self test of the Master/Slave board 
(Type A in the figure), parallel configuration and test 

of the Slave boards (3 Type B), and system level 
interconnect test.   
 
The embedded configuration and test architecture 
provides for various mechanisms to report status and 
output diagnostics information.  This includes go/no-go 
LEDs, 7-segment LED displays for diagnostic failure 
codes, and a serial port for text-based diagnostics.  The 
diagnostics information, which can be used for field 
replaceable unit (FRU) identification and PCB-level 
repair, is embedded in the storage image generated by 
the PC based software. 
 
 A major advantage of this approach is that it uses a 
“code-less” architecture, which greatly reduces 
engineering time and enables the same test and 
configuration vectors developed for prototype bring-up 
and production to be reused by embedding them in the 
FLASH memory for use by the dedicated configuration 
and test processor.  Using this approach embedded 
C++, Java or STAPL software development time is 
eliminated.  Embedded software diagnostic engineers 
can build software-based test and diagnostics on a solid 
base of deterministic structural tests and diagnostics 
provided by the configuration and test processor. 
 
Figure 7 shows a top-level block diagram of the 
embedded test and configuration processor.  This 
shows the interface of the processor to the FLASH 
memory, which is used to store test and configuration 
suites, the local IEEE 1149.1 bus, and the external 
connector interface, which is used develop and validate 
configuration and test vectors with the PC based tools. 

 
Figure 6.  Top-Level Block Diagram of the C&T Processor 
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Figure 7.  Top-Level Block Diagram of the C&T Processor 

 
In Figure 7, the RESET_N signal is used to reset the 
processor circuitry.  When RESET_N is asserted low, 
the registers and state machines of the processor are 
reset to appropriate initial states such that it is ready to 
start applying vectors from the FLASH memory.  The 
MSTRCK input to the configuration and test processor 
is a master clock that is used to run the processor.  
MSTRCK is generally provided by a clock source 
external to the processor and can be used to derive the 
TCK frequency of the 1149.1 bus. 
 
Circuitry in the processor enables selection of either an 
external test tool, or the processor, to be connected to, 
and operate, the 1149.1 Test Bus and Digital I/O 
(DIO).  The selection is made with the External 
Controller Enable (ECE_N) input.  When the ECE_N 
signal is asserted low, the circuitry is reset and the 
1149.1 Test Bus and DIO will be controlled from the 
TAP_DIO signals on the external connector. This 
enables the external 1149.1 controller and allows the 
PC-based tools to be used for development and 
validation, and for the FLASH memory to be 
programmed.  
 
The START/STOP input is used to cause a START or 
STOP sequence to occur in the configuration and test 
processor.  A start condition is issued with a rising 
edge on the START/STOP input.  When a START 
occurs, the values on the Test_Select inputs determine 
what test suite the processor runs, and the processor 
starts accessing the configuration and test data for this 
suite in the FLASH. At this point, the processor begins 
applying scan vectors.  While the processor is busy 

applying vectors, a falling edge on the START/STOP 
input will cause it to halt and begin a user defined clean 
up sequence, as determined by the ‘reset’ suite. 
 
The memory interface in Figure 7 consists of circuitry 
and signals for controlling the FLASH device.  The 
processor can interface to various other types of non-
volatile storage, and any number of devices.  In the 
example of Figure 7, a word-based FLASH device is 
used.  Here, the signals function as follows. The 
MRESET_N output, when active low, resets the 
FLASH device.  The CONTROL signals are used in 
controlling the FLASH‘s erase, program, and read 
operations.  These include Chip Enable (CE), Output 
Enable (OE) and Write Enable (WE) signals. The 
STATUS inputs are for monitoring the Ready/Busy 
status of the FLASH.  The ADDRESS outputs provide 
the address of the FLASH memory location to be read 
or programmed and the DATA signals provide data to 
be read from or programmed to the FLASH memory. 
 
The results interface of the configuration and test 
processor contains circuitry that reports the outcome of 
a test and provides failure and diagnostic information.  
This interface id comprised of the following input and 
output signals: 
 
•  FAIL_N: This output is asserted low to indicate 

that the processor detected a test failure. 
 
•  DONE_N: After the processor is finished running 

a set of scan vectors, this output signal is asserted 
low to indicate that it is no longer busy.  
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•  Error_Code: This can output a pass/fail code to the 

memory interface circuitry. This code will then be 
driven out on the DATA bus when there is a 
failure and is used for diagnostics purposes. 

 
•  Serial_TX/RX: These signals are the transmit data 

(TX) and receive data (RX) for the Universal 
Asynchronous Receiver/Transmitter (UART) port 
of the processor.  

 
A feature of the configuration and test processor is that 
it provides for a user definable error code to be 
associated with each scan vector suite as was shown in 
Figure 4.  By providing the Error_Code to the DATA 
bus, the code may be displayed to an LED display, or 
read by a general purpose CPU connected to the bus. 
Text messages as developed in the PC based software 
along with the appropriate Error_Code are provided 
automatically via the UART port, on the Serial_TX/RX 
input and output of the processor.  The text messages 
and error codes enable the customer or field service 
person to diagnose the problem down to the FRU 
(Field Replaceable Unit) with a low cost PDA. Tests 
can be made granular enough to allow identification of 
failing PCBs, plug-in daughter cards, and socketed 
components. A set of predefined error codes are used 
for failures of the configuration and test processor 
itself, such as FLASH is erased, can’t read from 
FLASH, corrupt image and others. 
 

Figure 8.  PDA for displaying diagnostics 
 

SUCCESS!

 
 

 
Failure code logging and failing boundary-scan bits can 
optionally be written to the FLASH at time of failure.  
This is particularly useful for systems and PCBs where 
displaying of the failure data is not possible in the field. 

When the failing PCB is returned to the factory, 
software can retrieve the failing bits and display 
detailed diagnostics.  By logging the failures 
automatically for the embedded structural tests, it 
avoids the common industry problem of NFF (No Fault 
Found) on returned PCBs.  The failure that was in the 
field can always be identified, even if it can’t be 
repeated again in the factory. 
 

Conclusions 
As Systems and PCBs become more complex, with less 
physical access, the test model will need to look more 
like that of the IC.  IC designers and IC test engineers 
solved the lack of visibility into the IC by using 
structured scan, structured ATPG techniques and BIST.  
While various approaches have been written in the 
past, the IC test community has standardized on 
implementing scan architectures with very little 
dependency on the functional logic of the IC. 
 
Likewise, we see this as the only direction for PCBs 
and Systems.  Embedded structural test through 1149.1 
will be the only way to maintain fault coverage and 
quality as the complexity of the PCBs and Systems 
increase and internal visibility decreases.  Key to easy 
and robust test development and configuration is the 
separation of the infrastructure needed from the 
functional system logic.  The embedded test and 
configuration processor described here meets that goal.  
For PCBs that have FPGAs, the test capability can be 
added with little to no overhead since the processor 
will replace the parts normally used for programming 
the FPGAs. 
 
We have shown an embedded test and configuration 
architecture that can be used by board and systems 
designers to enable novel new approaches to 
configuration and test of systems.  The problems 
associated with combining mission mode CPUs and 
mission mode logic for embedded configuration and 
test was described.  Merging FPGA configuration and 
embedded test functions onto a dedicated high 
throughput configuration and test processor offers the 
best long-term strategy for building re-configurable 
and self-testable systems. 
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