
Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

An Embedded Test and Configuration Processor for Self-Testable and
Field Re-Configurable Systems

CJ Clark and Mike Ricchetti

Intellitech Corporation, 70 Main Street, Durham, NH 03824
cjclark@intellitech.com and miker@intellitech.com

Abstract
This paper presents the architecture of a configuration
and test processor that enables designers to embed test
capabilities, and build products that are readily re-
configurable. The architecture supports built-in testing
and in-the-field re-configuration for PCBs and systems.

Introduction
An emerging issue for system designers is the desire
for configurable products with a quick time to market.
This has motivated designers to increase the adoption
of programmable architectures. As such, a growing
number of products now utilize programmable logic
devices, such as FPGAs and CPLDs, and
programmable non-volatile memories, such as
EEPROM and FLASH. In order to support
continuously changing industry standards, field
upgrade-able fixes and enhancements are becoming a
common product requirement. Designing systems with
the ability to remotely upgrade the programmable logic
and non-volatile memory of the system, while in the
field, is a typical approach to addressing these
requirements. However, obtaining access to all of the
programmable devices is increasingly more difficult,
especially for PCBs with mezzanine cards or multi-
PCB backplane based systems. For the system
designer, these capabilities can add to the costs and
design effort required to develop, and later to
manufacture such configurable products. Often, the
designers create their own ad-hoc functional based
methods for debug, configuration and test. This is a
costly and time-consuming approach, and does not
provide for a solution that is readily re-usable on future
product designs.

Traditionally, the approach used to embed test into
PCBs and systems has been to utilize functional
diagnostic code, as developed by test engineers and
systems designers, stored on-board the product. For
example, stored in the CPU’s FLASH memory. These
embedded tests are then used as a means to test the
integrated systems, both in manufacturing and in the

field. Such functional test programs are ad-hoc,
custom, embedded software applications. They require
specialized resources to develop, validate and maintain,
which results in high costs due to long development
times and related engineering resources. Furthermore,
Quality Managers cannot easily measure the fault
coverage of functional tests. That is, there is no way to
mathematically calculate the percentage of pins that are
being tested for stuck-at faults versus those not tested
when functional software based test is used. The
traditional method is to inject stuck-at faults through
physical access, but this is time consuming and
difficult to do on a modern PCB assembly with BGAs
and mezzanine cards. Collecting data on field returns
tells only what faults are being caught not what faults
are missed, and the major disadvantage of this
approach is that it is done after customers receive the
product.

While significant resources can be invested, any
software based functional tests that can’t identify faults
in the field or isolate faults enough to repair a failing
system offer little value over running the system in
mission mode and identifying that it doesn’t function.
Any functional test will also require a (mostly)
working system in order to execute, and so they offer
limited value in system-bring up and debug of
prototypes. As systems grow more complex, it is
becoming impractical to continue with this approach to
embedded system test, just as it became impractical to
continue testing ICs with functional tests.

Current Approaches to Embedded
Test and Configuration
The following sections provide some background on
methods that have traditionally been used for
facilitating product re-configuration, and for embedded
test of PCBs and systems.

Re-Configuration of Programmable Devices
The method that is predominately used to configure
FPGA logic employs application specific configuration
PROMs. These PROMs are programmed with the

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

configuration data for the design, which is then loaded
into the FPGA’s configuration memory at power-up.
However, there are a number of issues with regards to
this method.

A large FPGA, on average, requires up to four
configuration PROMs for a single design. In some
extreme cases, with the largest FPGAs and designs, up
to seven PROMs could be needed. The number of
PROMs impacts PCB parts costs, board area and layout
time. Moreover, configuration PROMs are limited in
that they can only hold one FPGA design. This is an
issue because in order to satisfy requirements for re-
configurable products, it is often necessary to have the
ability to load a product with different FPGA designs
based on the target use of the product by the customer.
For example, it is sometimes desirable to load different
protocols or algorithms into an FPGA based on the
target communication medium, or the geographical
location where the product will be used. A further
issue is that configuration PROMs employ a
proprietary method for programming FPGAs, so they
are not interchangeable between different
programmable device vendors. Also, the PROMs will
require an on-board mechanism that enables them to be
re-configured in-system.

Another issue with the configuration PROM method is
integration of FPGA configuration with board and
system test. For instance, many FPGAs now support
various I/O logic families such as GTL, SSTL, HSTL,
PECL and LVDS. To maximize fault coverage in a

complex system, the FPGA based PCBs need to be
tested in at least two scenarios, with the FPGA I/O
configured and with the I/O unconfigured. It is also
desirable to program the FPGAs during boundary-scan
test with small ‘test’ helper circuits to maximize test
coverage and add at-speed tests.

Issues surrounding PROM based configuration such as
these have driven design engineers to explore new
methods for in-system configuration. Unfortunately,
this has meant that many design teams have had to
design and develop their own custom configuration
capabilities. A custom configuration method often
ends up being a ‘one-off’ solution. This is not cost
effective due to the added design time and part cost,
increased engineering verification and debug time, lack
of support by commercial design and test tools, added
software integration costs and lack of re-use in the next
version of the product design. When using a
proprietary method for FPGA configuration, the lack of
coordination between configuration and test through
IEEE Std. 1149.1 or 1532 [1], [2] based test
development and validation tools, adds to engineering
time and increases test cost and complexity. Especially
the complexity of embedded self-test. In addition,
these approaches also result in loss of fault coverage.

Another common approach used to configure
programmable devices is to interface the system
processor to an 1149.1 Test Bus Controller (TBC) IC
[3], and then use this access mechanism to reconfigure
the FPGA PROMs. This method is shown in Figure 1.

Figure 1. Traditional CPU and Test Bus Controller

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

This however has serious drawbacks in that it doesn’t
reduce configuration PROM costs or PCB area, since
the PROMs are still needed for FPGA configuration.
Another major drawback is that there is no
interoperability between the PROM vendor’s external
programming tools and programming with the TBC
method. Successful programming of the PROMS with
the vendor’s tools does not guarantee that the TBC and
CPU firmware can program the PROMs.
Consequently, additional validation and debug are
needed. Configuration of FLASH based PROMS and
FPGAs can be timing dependent, so it is difficult to
predict the timing, throughput, and delivery of the
configuration data with this approach. Interfacing to
the CPU is not always straightforward, as it requires
glue logic, for example using a CPLD, to provide
peripheral addressing on the CPU address/data bus to
the TBC. Finally, glue logic is also needed around the
TBC to allow access by external PROM and FPGA
programming tools during bring-up and validation

Designers may be tempted to use the mission mode
processor to program FPGAs directly. However, this
creates hidden engineering and product costs
downstream. The slow configuration speed prohibits
practical application of multi-design FPGA loading.
For systems that use this approach, configuration times
can exceed several minutes to configure all of the
FPGAs in the system. For products that require “on-
the-fly” re-configuration, this is prohibitive. The poor
programming performance of this approach also affects
throughput during manufacturing, adding to the cost of
the product. A difficult problem to avoid with this
approach is system wide resets that are controlled by
programmable devices, such as CPLDs that also have
IEEE 1149.1 test capability. This creates undue
complexity since basic Boundary-Scan instructions can
toggle system and FPGA reset pins in ways that the
designer did not envision. This will affect the 1149.1
pin level diagnostics capability, as a simple stuck at
fault in a critical interconnect between an FPGA and
the CPU will negatively affect all of the serial data for
the Boundary Scan test. Thus, it is best to avoid
integrating mission mode logic with serial
configuration and test mechanisms.

Another major drawback with this approach is that
custom firmware must be developed for the target PCB
and each individual FPGA configuration must be
validated and debugged for the entire life of the
product. Software such as “JAM/STAPL” for

CPLD/PROM configuration has been offered by FPGA
vendors [4]. However, much consideration must be
made in order for it to be used in a complex multi-
board system. For instance, when this software is
executed by the mission mode CPU and FLASH,
additional care must be taken into account so when
new FPGA designs are distributed in the field and
programmed in the FLASH, the FLASH has no
possibility of becoming corrupt and hanging the
mission mode CPU. Finally, it should be noted that
with the adoption of IEEE Std. 1532, the JAM/STAPL
approach has become obsolete.

These types of risks should be assessed before in-house
development is considered. Also the on-going
software development and software maintenance costs
when target CPUs change, architectures change, or
software development teams change must be accounted
for. These factors can not be overlooked.

C++/STAPL Code-Based Embedded Test
Besides functional based testing, as was discussed in
the introduction, using the system CPU and an 1149.1
TBC is another approach that is often used to embed
test [5]. The approach enables a foundation for both
embedded structural test and functional tests, but has
its own shortcomings. Figure 2 shows a typical flow
used in this type of approach. Notice that it is
necessary to modify existing tests and re-validate them
after each modification.

The modifications of the production tests are needed
since the CPU, FLASH, and connected devices cannot
be tested while the CPU is applying the tests. Once
they are modified, they must be converted for the
embedded environment and validated a second time as
embedded tests. The engineering resource cost of this
approach, when used for every test and every FPGA
design, on every system configuration, should not be
overlooked.

A Novel Structured Approach to
Embedded Test and Configuration
It has been estimated that a PCB will be tested up to
seven times during its product life [7]. This coupled
with the desire to perform test and configuration in
geographically disperse areas, provides a compelling
reason to embed test and configuration into the PCB, or
system itself. For example, consider that in production
manufacturing, board level device configuration and

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

Figure 2. Development and validation flow for traditional CPU and TBC

testing would typically be run using ICT. However, if
we embed a dedicated configuration and test processor,
we can eliminate the need to run boundary-scan based
digital tests on ICT equipment. This lowers
manufacturing costs by greatly reducing the time
aboard spends sitting on higher cost capital equipment.
This approach to embedded test then allows the same
set of high quality tests to be used in many different
environments and through all phases of the product’s
life cycle. This includes lab prototyping, volume PCB
manufacturing, system integration, vibration test,
HALT/HASS test, power-up self-test, field service and
depot repair.

A dedicated configuration and test processor is able to
manage multiple system configurations, so system re-
configuration can take place anywhere and engineering
changes can be easily made at any time during a
product’s life cycle. There are many examples of
dedicated, special purpose, processors in systems
today. For example, network processors, audio
processors, digital signal processors and video
processors. For such tasks, dedicated processors offer
many advantages over using the mission mode general
purpose CPU. In this case, a dedicated architecture for
embedded test enables testing of the general purpose
CPU and its’ support logic, and logging of all failures
without the need for the system to function.

For these reasons, we developed a dedicated embedded
configuration and test processor (C&T processor) that
will function as a centralized manager for configuring
and testing PCBs and systems [8]. This architecture

was specifically designed to addresses the problems
associated with the previously discussed methods, and
it has many advantages and benefits when compared to
these other approaches. First, by including a dedicated
embedded configuration and test processor in products,
board and system designers can simplify in-system
device configuration while enabling comprehensive
structural test throughout the system, including the
mission mode CPU. The dedicated processor can be
provided as an IC or as infrastructure IP, which reduces
the design time for engineers. Consequently, the
embedded test and configuration processor enables a
structured methodology for designing field-
configurable and self-testable systems. This reduces
test-engineering development effort and reduces test
execution time. The processor can be used at the board
and system levels and allows designers to take
advantage of cost efficiencies over the entire product
life cycle. It also provides for a scalable and reusable
methodology, which augments existing test and
configuration standards. Finally, the architecture was
designed to off-load ICT equipment, such that
structural digital test and device configuration can be
done in-system, while expensive ICT equipment can be
better leveraged for analog testing.

Centralized Management for Embedded
Configuration and Test
The configuration and test processor is designed
around a novel architecture. Enabling manufacturing
tests, and device configuration suites, to be developed
and validated with automated PC based tools and

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

Figure 3. Embedded Configuration and Test (C&T) Processor for a single PCB system

subsequently automatically embedded into the system.
The processor is a vendor independent solution,
eliminating the need for proprietary PROM or FLASH
based solutions. As infrastructure IP for configuration
and test of boards and systems, designers no longer
need to develop customized methods and designs for
embedded in-system solutions. A single configuration
and test processor at power-up, or under CPU control,
can automatically run the entire manufacturing test
stream, including scan tests, logic BIST, memory
BIST, and board/system interconnect tests – as well as
configure all the programmable logic devices in the
system.

Figure 3 shows an example of how the configuration
and test processor can be used at the board level. This
illustrates how the configuration and test processor
connects externally to automated development tools
that are used for developing and validating
configuration data and test programs. The flow for
development and validation with this architecture is
also show in Figure 3, which is much simpler than the
embedded test flow required in Figure 2.

The architecture uses PC-based IEEE 1149.1 software
tools for ATPG and debug. This development

environment then interfaces with an IEEE 1149.1
controller, which connects to the processor on the PCB.
The embedded test and configuration processor then
interfaces with an optional Scan Ring Linker (SRL) [6]
that partitions the scan paths at the board level.

As can be seen by comparing Figure 3 with Figure 1,
the embedded configuration and test processor replaces
the configuration PROMS and interfaces to a FLASH
memory device. The FLASH stores the test and
configuration suites of the processor and the processor
drives the 1149.1 scan chains on the board, in this
example via an SRL. The process also interfaces with
an external IEEE 1149.1 connector, which allows
communication to and from the PC-based tools. This
interface is used to develop and validate configuration
and test vectors using the development and validation
tools. This is a major advantage in that the external
Boundary Scan tools can communicate through the
processor directly. Therefore, this guarantees the
equivalent drive and signal integrity for the on-board
embedded configuration and test mechanism, as was
achieved with the external PC-based tools. The
external tools and the embedded processor essentially
contain the same ‘engine’ for interpreting the scan test
data and the FPGA configuration data, so their

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

behavior is exactly the same, including critical timing
elements needed for CPLD programming. The result is
that only one configuration and test validation step is
needed, eliminating the need to re-validate the vectors
in the embedded environment. After the test and
configuration suites are finalized through the external
connector and tools, they are downloaded into the
FLASH for embedded execution. Then the external
IEEE 1149.1 equipment is disconnected from the PCB
and the processor assumes control of running the
embedded test suites and programming the FPGAs.

Efficient Storage Architecture
The PC based software tools enable the developer to
create test and configuration ‘suites’ that hold an
unlimited number of test vectors, test scripts, flow
scripts, and FPGA configuration data files. The PC
based software and C&T processor can hold up to 16
suites at one time. The first suite, suite ‘0’ is reserved
as the ‘reset’ suite, enabling a set of procedures to be
executed automatically when a failure occurs. The
‘reset’ suite can be as simple as causing a TEST-
LOGIC-RESET or more complex, addressing PCBs in
a system and performing an orderly shutdown. An
example test suite is shown in Figure 4. In the figure,
the suite includes running standard tests like
interconnect and more advanced tests such as BIST.
Note that complex decision-making is a capability,
allowing the C&T processor to identify PCB and
System configurations and acting appropriately.
Important controls used during PC based 1149.1 test
are also executed by the C&T processor, for instance,
the TCK frequency can be changed to 1MHZ on-the-
fly to program slower devices such as a CPLD. The
C&T processor can apply one of these 15 sets of test
and configuration ‘suites’ at power-up.

Figure 4. Example Test Suite

Also shown is the embedded diagnostic code. As tests
and configuration data are added to the suites, a
diagnostic code is assigned that will be used by the
C&T processor to indicate which test failed during
power-up. The test suites and corresponding test select
pins of the processor allow the engineer to create one
set of configuration and test to be applied at power-up
and another test and configuration suite to be applied at
a different time, such as during maintenance and
updates of the system. A single incremental image
generated by the PC based tools could be distributed
physically or electronically to customers and uploaded
to the storage area of the C & T processor. For
instance, CPLDs do not need to be programmed at
power-up, however, by including a CPLD
reconfiguration capability on suite 2, all (or just
specific ones) of the CPLDs in a system could be
updated in the field, without writing general purpose
CPU code to accomplish the task.

The PC based software tools analyze duplicate data
found not only in a single suite, but also across all 16
suites. The novel way the storage image is created
enables scalability, as in multi-board systems many of
the tests and configuration data are the same. This
capability reduces the size of the image beyond the
built-in data compression and hence the size of the
FLASH needed for storage. For example, consider a
PCB where three 16 Megabit FPGAs out of six have
the same FPGA design, as illustrated in Figure 5.
Using a CPLD and a FLASH to program the FPGAs
requires 48Megabits of FLASH. With the C&T
processor, compression of the FPGA data results in an
approximately 10 Megabit image. With just a few
bytes of data overhead, the same image can be used for
all three FPGAs, providing an effective savings of 38
Megabits of FLASH memory. Since many large
telecom PCBs have multiple data channels, typically 4,
8 or 16 FPGAs have duplicate design data in them.
The C&T processor’s FLASH needs are considerably
reduced compared to using PROMs, commercial
configurators from the FPGA vendors, or an in-house
designed sequencer using a CPLD coupled to a
FLASH. The reduced storage needs allow designers
more flexibility in making in-the-field re-configurable
systems, since one FPGA change doesn’t require an
entire duplicate set of configuration data for the PCB.
An FPGA that performs a DSP function can be loaded
with different DSP algorithms based on the target use
of the product, with only an incremental impact on
storage area.

Suite 1
1 Check_Scan_Chain.script
2 Interconnect.svf
3 Execute_Bist.script
Target U1

4 Program_DesignA.bit
5 Check_U2_exists.script
6 Program_DesignA.bit
Target U3

7 Program_DesignB.bit

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

Figure 5. Processor Storage Example

DesignDesign
AA

DesignDesign
AA

DesignDesign
BB

DesignDesign
BB

DesignDesign
AA

DesignDesign
CC

C & T Processor StorageC & T Processor Storage

FPGA 1FPGA 1 FPGA 2FPGA 2

FPGA 5FPGA 5 FPGA 6FPGA 6

FPGA 4FPGA 4FPGA 3FPGA 3

ReRe--useuse
DataData

Suite 1Suite 1

Design ADesign A
Design B Design B
Design CDesign C
Design DDesign D
Test Data & ScriptsTest Data & Scripts
Execute TestsExecute Tests
Program FPGA 1Program FPGA 1--66
With A,A,B,A,B,CWith A,A,B,A,B,C
Execute TestsExecute Tests
Program FPGA 1Program FPGA 1--66
With D,D,B,D,B,CWith D,D,B,D,B,C

PCB with 6 FPGAsPCB with 6 FPGAs

Suite 2Suite 2

Using the C&T Processor at the System Level
The configuration and test processor can also be used
at the system level, this is shown in the example multi-
board system of Figure 6. This system uses a multi-
drop 1149.1 bus called the Parallel Test Bus (PTB),
along with an addressable Parallel Test Bus Controller
(PTBC) on each board. These are described in the
Parallel Test Architecture (PTA) references [6], [10],
[11]. In this configuration, only the Master/Slave PCB
(Type A) has an embedded configuration and test
processor. This provides a single, centralized,
processor that is dedicated for managing all system
configuration and test. Engineers can use the external
IEEE 1149.1 controller and embedded processor for
validation, before embedding the configuration and test
data. As can be seen, the architecture enables
embedding test and configuration at the system level,
including: PCB self test of the Master/Slave board
(Type A in the figure), parallel configuration and test

of the Slave boards (3 Type B), and system level
interconnect test.

The embedded configuration and test architecture
provides for various mechanisms to report status and
output diagnostics information. This includes go/no-go
LEDs, 7-segment LED displays for diagnostic failure
codes, and a serial port for text-based diagnostics. The
diagnostics information, which can be used for field
replaceable unit (FRU) identification and PCB-level
repair, is embedded in the storage image generated by
the PC based software.

 A major advantage of this approach is that it uses a
“code-less” architecture, which greatly reduces
engineering time and enables the same test and
configuration vectors developed for prototype bring-up
and production to be reused by embedding them in the
FLASH memory for use by the dedicated configuration
and test processor. Using this approach embedded
C++, Java or STAPL software development time is
eliminated. Embedded software diagnostic engineers
can build software-based test and diagnostics on a solid
base of deterministic structural tests and diagnostics
provided by the configuration and test processor.

Figure 7 shows a top-level block diagram of the
embedded test and configuration processor. This
shows the interface of the processor to the FLASH
memory, which is used to store test and configuration
suites, the local IEEE 1149.1 bus, and the external
connector interface, which is used develop and validate
configuration and test vectors with the PC based tools.

Figure 6. Top-Level Block Diagram of the C&T Processor

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

Figure 7. Top-Level Block Diagram of the C&T Processor

In Figure 7, the RESET_N signal is used to reset the
processor circuitry. When RESET_N is asserted low,
the registers and state machines of the processor are
reset to appropriate initial states such that it is ready to
start applying vectors from the FLASH memory. The
MSTRCK input to the configuration and test processor
is a master clock that is used to run the processor.
MSTRCK is generally provided by a clock source
external to the processor and can be used to derive the
TCK frequency of the 1149.1 bus.

Circuitry in the processor enables selection of either an
external test tool, or the processor, to be connected to,
and operate, the 1149.1 Test Bus and Digital I/O
(DIO). The selection is made with the External
Controller Enable (ECE_N) input. When the ECE_N
signal is asserted low, the circuitry is reset and the
1149.1 Test Bus and DIO will be controlled from the
TAP_DIO signals on the external connector. This
enables the external 1149.1 controller and allows the
PC-based tools to be used for development and
validation, and for the FLASH memory to be
programmed.

The START/STOP input is used to cause a START or
STOP sequence to occur in the configuration and test
processor. A start condition is issued with a rising
edge on the START/STOP input. When a START
occurs, the values on the Test_Select inputs determine
what test suite the processor runs, and the processor
starts accessing the configuration and test data for this
suite in the FLASH. At this point, the processor begins
applying scan vectors. While the processor is busy

applying vectors, a falling edge on the START/STOP
input will cause it to halt and begin a user defined clean
up sequence, as determined by the ‘reset’ suite.

The memory interface in Figure 7 consists of circuitry
and signals for controlling the FLASH device. The
processor can interface to various other types of non-
volatile storage, and any number of devices. In the
example of Figure 7, a word-based FLASH device is
used. Here, the signals function as follows. The
MRESET_N output, when active low, resets the
FLASH device. The CONTROL signals are used in
controlling the FLASH‘s erase, program, and read
operations. These include Chip Enable (CE), Output
Enable (OE) and Write Enable (WE) signals. The
STATUS inputs are for monitoring the Ready/Busy
status of the FLASH. The ADDRESS outputs provide
the address of the FLASH memory location to be read
or programmed and the DATA signals provide data to
be read from or programmed to the FLASH memory.

The results interface of the configuration and test
processor contains circuitry that reports the outcome of
a test and provides failure and diagnostic information.
This interface id comprised of the following input and
output signals:

• FAIL_N: This output is asserted low to indicate

that the processor detected a test failure.

• DONE_N: After the processor is finished running

a set of scan vectors, this output signal is asserted
low to indicate that it is no longer busy.

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

• Error_Code: This can output a pass/fail code to the

memory interface circuitry. This code will then be
driven out on the DATA bus when there is a
failure and is used for diagnostics purposes.

• Serial_TX/RX: These signals are the transmit data

(TX) and receive data (RX) for the Universal
Asynchronous Receiver/Transmitter (UART) port
of the processor.

A feature of the configuration and test processor is that
it provides for a user definable error code to be
associated with each scan vector suite as was shown in
Figure 4. By providing the Error_Code to the DATA
bus, the code may be displayed to an LED display, or
read by a general purpose CPU connected to the bus.
Text messages as developed in the PC based software
along with the appropriate Error_Code are provided
automatically via the UART port, on the Serial_TX/RX
input and output of the processor. The text messages
and error codes enable the customer or field service
person to diagnose the problem down to the FRU
(Field Replaceable Unit) with a low cost PDA. Tests
can be made granular enough to allow identification of
failing PCBs, plug-in daughter cards, and socketed
components. A set of predefined error codes are used
for failures of the configuration and test processor
itself, such as FLASH is erased, can’t read from
FLASH, corrupt image and others.

Figure 8. PDA for displaying diagnostics

SUCCESS!

Failure code logging and failing boundary-scan bits can
optionally be written to the FLASH at time of failure.
This is particularly useful for systems and PCBs where
displaying of the failure data is not possible in the field.

When the failing PCB is returned to the factory,
software can retrieve the failing bits and display
detailed diagnostics. By logging the failures
automatically for the embedded structural tests, it
avoids the common industry problem of NFF (No Fault
Found) on returned PCBs. The failure that was in the
field can always be identified, even if it can’t be
repeated again in the factory.

Conclusions
As Systems and PCBs become more complex, with less
physical access, the test model will need to look more
like that of the IC. IC designers and IC test engineers
solved the lack of visibility into the IC by using
structured scan, structured ATPG techniques and BIST.
While various approaches have been written in the
past, the IC test community has standardized on
implementing scan architectures with very little
dependency on the functional logic of the IC.

Likewise, we see this as the only direction for PCBs
and Systems. Embedded structural test through 1149.1
will be the only way to maintain fault coverage and
quality as the complexity of the PCBs and Systems
increase and internal visibility decreases. Key to easy
and robust test development and configuration is the
separation of the infrastructure needed from the
functional system logic. The embedded test and
configuration processor described here meets that goal.
For PCBs that have FPGAs, the test capability can be
added with little to no overhead since the processor
will replace the parts normally used for programming
the FPGAs.

We have shown an embedded test and configuration
architecture that can be used by board and systems
designers to enable novel new approaches to
configuration and test of systems. The problems
associated with combining mission mode CPUs and
mission mode logic for embedded configuration and
test was described. Merging FPGA configuration and
embedded test functions onto a dedicated high
throughput configuration and test processor offers the
best long-term strategy for building re-configurable
and self-testable systems.

References
[1] IEEE Std 1149.1-2001, “IEEE Standard Test
Access Port and Boundary-Scan Architecture”,
Institute of Electrical and Electronic Engineers, Inc.,
New York, NY, USA.

Copyright (c) 2003 Intellitech Corp. All rights reserved. Copyright (c) 2003 Intellitech Corp. All rights reserved.

[2] IEEE Std 1532-2002, “IEEE Standard for In-
System Configuration of Programmable Devices”,
Institute of Electrical and Electronic Engineers, Inc.,
New York, NY, USA.

[3] Forstner, P., "Test-Bus Controller SN74ACT8990",
Texas Instruments Application Report, SCAA044,
August 2000.

[4] Anon., "Using JAM STAPL for ISP & ICR via an
Embedded Processor", Altera Corp., Application Note
122, March 2000.

[5] Van Treuren, Bradford G., Miranda, Jose M.,
“Embedded Boundary Scan Testing”, Digest, Board
Test Workshop (BTW02), Baltimore, MD, October
2002.

[6] C.J. Clark, Mike Ricchetti, “Infrastructure IP for
Configuration and Test of Boards and Systems”, IEEE
Design & Test of Computers, vol. 20, no. 3, May-June
2003, pp. 78-87.

[7] Parker, Kenneth, et al.,” Boundary Scan Signals
Future Age of Test”, EP&P, 7/1/2002.

[8] Ricchetti, M. Clark, CJ, "Method and Apparatus for
Embedded Built-In Self-Test (BIST) of Electronic
Circuits and Systems", US Patent Application
10/142,556, US Patent and Trademark Office,
Washington, D.C., December 4, 2001.

[9] Ricchetti, M. Clark, CJ, "Method and Apparatus for
Embedded Built-In Self-Test (BIST) of Electronic
Circuits and Systems", US Patent Application
20030106004, US Patent and Trademark Office,
Washington, D.C., May 10, 2002.

[10] Ricchetti, M. Clark, CJ, "Method and Apparatus
for Optimized Parallel Testing and Access of
Electronic Circuits", US Patent Application
2003009715, US Patent and Trademark Office,
Washington, D.C., July 5, 2001. http://www.uspto.gov

[11] Clark, CJ, Ricchetti, M., "Method and Apparatus
for Optimized Parallel Testing and Access of
Electronic Circuits", PCT Patent Application
WO03005050, World Intellectual Property
Organization, Geneva, Switzerland, July 5, 2001.
http://ep.espacenet.com

